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ABSTRACT

Under certain simplifying assumptions, the influence of a magnetic field on the pulsational
stability of stars has been investigated, with a particular application to the problem of the
stability of upper-main-sequence stars. It has been found that, if the magnetic field averaged
over a spherical shell is either constant at all layers or distributed such that v, the ratio of magnetic
to thermodynamic pressure ((H2)/24xP), is constant at all layers, the critical mass for stability
against nuclear-energized pulsations is virtually unaffected by the presence of the field. On the
other hand, if the field is strong in the envelope but weak in the core of the star, the critical mass
is considerably increased; when v exceeds about 0.1 in the envelope, stability is attained at all

masses.

Subject headings: stars: interiors — stars: magnetic — stars: pulsation

1. INTRODUCTION

Coherent magnetic fields are known to exist on the
surfaces of many bright main-sequence stars. How
deeply these fields extend is a matter of conjecture, but
if they are ““fossil” fields, built up from an interstellar
seed field during the pre-main-sequence phase of
evolution, they could be very intense throughout the
body of the star (Cowling 1965). A modifying in-
fluence, however, arises from the existence of rota-
tional and convective circulation currents, which are
likely to have tangled the field lines in a complex
manner, and which may also have expelled from the
star most of the exterior field lines or else have pulled
them well below the observed surface (Mestel 1965).
A complicated interior field geometry may in fact be
essential in order to have preserved the field against
destructive hydromagnetic instabilities (Tayler 1974).
Hence it is of interest to ask what effect a strong, but
well-tangled, interior magnetic field has on the pulsa-
tional properties of upper-main-sequence stars.

It is already known in the case of nonmagnetic,
nonrotating stars that, if the stellar mass exceeds a
certain limit, the nuclear reactions occurring in the
central regions induce a violent pulsational instability
of the whole star, provided that the damping in the
outer layers due to local opacity variations is not too
severe. This instability develops most strongly in the
fundamental radial mode of pulsation. However, it has
been found to be readily quenched by fast axial rota-
tion of the star. The purpose of the present paper is
to determine how the pulsational stability is affected
by an assumed magnetic field.

II. BASIC EQUATIONS

In order to make the problem tractable, a number
of simplifying approximations are introduced. First,
the magnetic field is assumed to be sufficiently small
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in scale and sufficiently random in orientation that the
net force it exerts can be considered to be approxi-
mately radial. Then the problem can be treated as a
spherically symmetric one. No limit on the intensity
H of the magnetic field need be imposed, but the degree
of tangling of the field lines is limited by the require-
ment that they be not twisted into such small loops
that a significant decay of the field would have
occurred during an observable portion of the star’s
lifetime. Since the decay time is, in order of magnitude,
given by

T = 4mol? 1

(where [ is a characteristic length and the electrical
conductivity ¢ &~ 2 x 10714732 emu [Cowling 1953]),
a lower limit to the size of the long-lasting flux loops
can be fixed, in units of the stellar radius, at //R ~ 102
near the surface and ~ 10~% near the center, if 7 is set
equal to 10°® yr, which is appropriate to the massive
stars in question here. These loop sizes turn out to be
small enough to confirm our assumption that the field
could be well tangled and yet persist for a significant
length of time. It is also possible to demonstrate that,
because of the high electrical conductivity, the gradual
decay of the magnetic field generates Joule heat at a
rate that is negligible in comparison with the star’s
radiative output. The rate of heating per unit mass is,
in order of magnitude, given by (Cowling 1953)

j%lop = H2[167%%0p . )

Taking the magnetic energy density H?/8x to be at
most equal to the thermodynamic energy density and
using for / the lower limits derived above, we find that
j%/op must be less than ~10~* ergs g=! s~ ! near the
stellar surface and less than ~10ergs g=! s~! near
the stellar center. These values are insignificant when
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compared with the mean rate of energy production
inside a massive star, L/M ~ 10* ergsg=*s™1,

Next we turn to a discussion of the equations that
will actually be needed for the problem. The general
equation of motion for the fluid in the presence of a
magnetic field H is, in conventional notation,

1
p%= ~VP 4 g+ (VX H)XH.  (3)
Trasco (1970) has shown how the vectorial Lorentz
force can be reduced to a mean radial form, by
defining

Fone(r) = % f jl j:” [11; (V% H) X H] Adudp, (4)

where 1, is a unit vector in the r-direction and the
integral extends over a spherical shell. If, following
Trasco, we also define

@ty =3 | H-Ha ©

and use the assumption that the field is small-scale and
random in order to write for the mean radial com-
ponent {H,%2> = 1(H?), then equation (4) reduces to
the simple form
0 (1<KH%
Smag(r) = o (5—‘8”— (6)

for the axially symmetric case. Hence the reduced
equation of motion of the fluid becomes

d 8 ( P <H2>) _ GM(r)p

Parr = "o 247 r2

Q)

It is apparent from this equation that the total pressure
may be regarded as the sum of a thermodynamic
pressure P and a magnetic pressure {H?2)[24.

If we now assume for simplicity that (H2)/24moc P2,
where a is a constant, and if we define

v = CH?)[24xP ®)

then the hydrostatic version of equation (7) can be
written

dP 1 GM(r)p ©
dr =~ 1+ av re )
The other basic equations of static stellar structure
remain the same, to our degree of approximation, as
in the absence of a magnetic field. Therefore, the only
effect of the magnetic field is to weaken the gravita-
tional force by an amount (1 + av)~1.

Radial perturbations of the equilibrium models will
next be computed in the linearized adiabatic approxi-
mation by using the equations for the nonmagnetic
case given by Schwarzschild and Hiarm (1959) but
suitably modified to allow for the presence of (a) per-
manent magnetic fields and (b) opacity sources other
than pure electron scattering.
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The rate of change of the magnetic field following
the motion of a mass element of the fluid is given by

dH oH
= =% +(VH. (10)

For highly conducting material like the ionized gases
inside stars, the equation of electromagnetic induction
can be written

H_UxwxH. (11)

Assuming small periodic oscillations about the equi-
librium state, we may set, in the usual way, r =
ro + dre!?t, etc., where o is here an angular oscillation
frequency. With the help of the relation V-H = 0,

equation (10) may be brought into the form, correct to
first order in small quantities,

SH = (Ho-V)or — Hy(V-5r). (12)

It is required to compute
1
SCH?S = f H,-8Hdy . (13)
-1

Supposing the oscillations to be purely spherically
symmetric, and using the relations 8p/p, = —V-ér
and (H,?) = 1(H?), we obtain after some algebra the
simple result

OIS 9

Here the zero subscripts have been dropped for con-
venience. Equation (14), being based on equation (11),
expresses the fact that the magnetic lines of force are
carried along with the moving fluid, i.e., that the
magnetic flux is locally conserved.

Next, by perturbing equation (7) and by assuming
that the stellar gas is completely ionized and is oscillat-
ing adiabatically, we find

LAy _ (Y
x\?P) = \T+ a1,

4y 4v oP
| (1 +55e-m0) 7

+(+ av)(4 + %) -srl] . (15)
where
_ (@ =p(r, -8 —28 4
b= .6 — 79 (1 B 1) (16)

and the usual nondimensional Schwarzschild (1958)
variables have been adopted. The other parameters
include the square of the nondimensional pulsational
eigenfrequency w? = 02R3/GM, where o = 2m[period;
the generalized adiabatic exponent I'; ; the local effec-
tive polytropic index n; and the homology invariant
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V = —dIn P/dInr. For an arbitrary opacity law, the
radiative luminosity perturbation is given by

SLO) _ 5 00 s
L(r)_4r aP+(4+77)T
dr d (8T
+Tﬁ,$(?)a an

where the thermodynamic derivatives of opacity are
o« =0Ink/dlnpand y = —81In /0 In T. The rest of
the stellar perturbation equations are the same as in
Schwarzschild and Harm’s (1959) paper, except for a
correction of some very minor errors in their equations
and for a suppression of the terms referring to atmos-
pheric running waves. The stability integral, which
indicates whether the star is stable or unstable, is un-
changed in the presence of a magnetic field when the
quasi-adiabatic form given by Schwarzschild and
Hérm (their eq. [8]) is used.

III. NUMERICAL RESULTS

To afford a comparison with earlier work on non-
magnetic stellar models, the basic physical formulae
adopted by Stothers and Simon (1970) have been used
here, in conjunction with two different opacity repre-
sentations: (1) Thomson scattering by free electrons
and (2) Cox-Stewart opacities in the form given in the
paper just cited. For the magnetic field intensity, three
representative spatial distributions have been chosen:
(1) a uniform mean field intensity (i.e., (H?) =
constant); (2) a nonuniform mean field intensity, with
v = constant everywhere; and (3) the same as case (2),
but with no magnetic field allowed in the convective
core. For simplicity, it has been assumed that the
adopted spatial distribution in the envelope holds
formally up to the top of the atmosphere; the substitu-
tion of more realistic surface boundary conditions has
been found, by supplementary calculations, to affect
the solutions very little (see Appendix).

A uniform mean magnetic field is a simple example
of a force-free field. It has no effect on the equi-
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librium structure of the star (except at the surface).
On the other hand, the example of a nonuniform field
with v = constant everywhere strongly concentrates
the field toward the center of the star and provides an
effective force that counteracts gravity. Such a field
would result from the contraction of a primordial gas
cloud that was initially permeated by a uniform mag-
netic field if the magnetic lines of force remained
frozen into the material during contraction. It is easily
seen that this consequence follows from equation (14)
since the magnetic field strength of a mass shell of the
cloud would increase in time as {(H?2) oc p*/3, while
the final structure of the star must be roughly poly-
tropic with P oc p*/3. In this idealized case, a straight-
forward similarity analysis of the basic equations of
stellar structure leads to a rough prediction of how the
surface properties of the star ought to change with the
strength of the magnetic field, viz., R ~ constant;
L~ ( +v)"* for a high stellar mass; and L ~
(1 + »)~! for an “infinite” stellar mass. For greater
refinement in these predictions, the detailed models
for 54 M, in Table 1 should be consulted. The rela-
tively strong dependence of luminosity on v can be
used, in conjunction with the observed mass-luminosity
relation, to set a limit of v < 0.2 for upper-main-
sequence stars.

The foregoing picture, however, is considerably
oversimplified. Turbulent convection, particularly in
the large core of the star, would probably severely
twist the magnetic field lines within the superadiabatic
layers, thus causing them to decay rapidly, or would
possibly expel them into the radiative part of the
envelope, where they could then diffuse upward, or
even dissipate, as a result of hydromagnetic insta-
bilities. Of some physical interest, then, is the case
where a strong magnetic field pervades the envelope
but where the core is largely nonmagnetic. This is, in
fact, our third case listed above. In order to derive the
convective core boundary, we have demanded equality
of the radiative and adiabatic temperature gradients on
the interior side of the boundary, where the convective
velocities in the core should vanish, and we have

TABLE 1
CRITICAL MASSES FOR THE PULSATIONAL STABILITY OF MASSIVE MAGNETIC STARS WITH (X, Z) = (0.70, 0.03)*

Envelope Mean  Core Mean
Opacity Magnetic Field Magnetic Field vg

MM, log(L/Lo) logT. log(R/Ro) B pe/<p>

€
©

Thomson....... Zero Zero 0
Uniform Uriform 0.10
1.00
Nonuniform Nonuniform 0.10
Nonuniform Zero 0.08
0.10
0.14
Cox-Stewart.... Zero Zero 0
Uniform Uniform 0.10
1.00
Nonuniform Nonuniform 0.10
Nonuniform Zero 0.08

54 5.67 4.70 0.96 0.65 21 3.0

54 5.67 4.70 0.96 0.65 21 3.0

57 5.71 4.70 0.97 0.64 21 2.9

54 5.57 4.68 0.95 0.68 20 2.9

95 6.09 4.72 1.14 0.54 30 2.8
115 6.23 4.72 1.20 0.50 33 2.7
~300 6.84 4.73 1.48 0.34 57 2.5
106 6.15 4.72 1.16 0.51 29 2.8
107 6.15 4.72 1.16 0.51 29 2.8
112 6.18 4.72 1.17 0.50 29 2.7
94 5.97 4.70 1.12 0.56 28 2.9

~ 500 7.09 4.73 1.61 0.27 66 24

* » = constant in regions with a nonuniform mean magnetic field.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1979ApJ...229.1023S

J. - T2797 107350

A%

rt

1026 STOTHERS

assumed that, on the exterior side, the presence of the
magnetic field quenches any local convective insta-
bility. How the Schwarzschild criterion for convective
instability is to be modified to take account of a
magnetic field is unclear (Tayler 1971), but in any case
small modifications of the convective core boundary
in our stellar models are found to change the resulting
structures rather little.

Alternatively, if a strong magnetic field exists in the
core, it might completely suppress the convection there.
At present, it is not known whether, for this to happen,
the magnetic pressure must be comparable with gas
pressure or only with turbulence pressure (which is,
in the core, much weaker than gas pressure). Current
evidence seems to favor the existence of large convec-
tive cores in upper-main-sequence stars (Stothers and
Chin 1973). Therefore, any magnetic field in the core
probably generates pressures that are, at least, not
enormously stronger than turbulence pressure. These
remarks serve to elucidate our particular choices for
the magnetic field distributions mentioned above.

Vibrational stability of the stellar models in the
fundamental radial mode of pulsation has been tested
for various assumed strengths of the magnetic field.
Results for the “critical” masses dividing stable from
unstable models are given in Table 1, where the non-
magnetic models listed for the two adopted opacity
representations are those derived originally by Schwarz-
schild and Harm (1959) and by Stothers and Simon
(1970). In this table, v, refers to the magnetic field in
the stellar photosphere (a value of 1 corresponding to
H =~ 2000 gauss).

Itis, at first sight, surprising how slight a dependence
on magnetic field strength is shown by the critical
masses in the cases where (H?2) is either constant or
distributed according to the law v = constant. In fact,
the actual dependence must be even milder than is
indicated by the quasi-adiabatic calculations if non-
adiabatic effects near the surface are taken into
account. These effects become significant for large
values of v. If they are estimated in the manner sug-
gested by Stothers and Simon (1970), then even for a
surface field as intense as 34,000 gauss—the largest
ever observed in a main-sequence star—the assumption
of a uniform mean field yields virtually the same critical
mass as the case of no field at all. The physical explana-
tion of these numerical results will be given in § IV.

In the last case, where the envelope of the star is
assumed to possess a strong magnetic field but the
core little or no field, the reduction of gravity in the
outer layers increases the central condensation of
the star and hence lowers the pulsation amplitudes near
the center, where the nuclear driving sources lie. In
consequence, the critical mass shifts to a large enough
value that radiation pressure—a destabilizing in-
fluence—overcomes the damping effect of the increased
central condensation. It turns out that, at some further
mass value beyond the critical mass, the increased
central condensation eventually overcomes radiation
pressure and pulsational stability is recovered. A
numerical example will best illustrate these results.
Consider the case of Thomson scattering as the
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opacity. If v = 0, then the critical mass is found to be
54 M, the models with higher masses all being un-
stable. When v is increased to 0.10, the critical mass
shifts upward to 115 M, but the models heavier than
~ 1800 M, are found to be stable. For a sufficiently
large value of v, pulsational stability is attained at all
masses. In the present example, this limit is reached
when v = 0.14, in which case stability is minimal at
~300 M,. If the Cox-Stewart opacities are adopted,
the corresponding values of v and of stellar mass are
0.08 and ~ 500 M.

IV. ANALYTIC RESULTS
a) Uniform Mean Magnetic Field

For stellar models endowed with a general magnetic
field, Chandrasekhar and Limber (1954) have com-
puted an approximate expression for the square of the
pulsational eigenfrequency:

o? = (XI'y) — 4)(— W - Emas)/l, (18)

where [ is the total moment of inertia of the star with
respect to the center, W is the total gravitational
potential energy, and E,,, is the total magnetic
energy. If V is the volume, then En,, = [ (H?/8)dV.
A conveniently reduced expression for o* has already
been derived for the nonmagnetic case (Stothers 1974).
Including the magnetic field, we here obtain!

— Xy —4 p. En
o =TT o~ Y~ Dgqamre (19

where the approximate relation I = 0.1R*>M has been
introduced. For the case of a uniform mean field of
any reasonable intensity, the total magnetic energy
will be very small compared with the total gravitational
potential energy since the magnetic pressure is signi-
ficant only in the outermost layers. Therefore, the
second term in equation (19) can be dropped.

For a nonmagnetic star, the equilibrium structure
can be approximated satisfactorily by Eddington’s
(1926) standard model. This model is a polytrope of
index n = 3, with p./{p) = 54 and B = constant.
Associated with it is Eddington’s quartic equation,

(M|Mo)u® = 18(1 — p)*/28~%, (20)

which provides the link between the ratio of gas
pressure to total thermodynamic pressure B and the
stellar mass M if the mean molecular weight u is
specified. Thus <I';>, being a unique function of B,
is immediately known. Since, in a magnetic star, a
uniform mean field exerts no net radial force, equation
(20) remains unchanged when such a field is present.

Equations (19) and (20), together with the deter-
mining condition for the “critical” mass w® % 3
(§ IT; Simon and Stothers 1969), define the problem
completely. It is evident from a simple inspection of

1 A wider range of applicability results if one replaces the
factor 2n — 1 (valid for 1.5 < n < 3)-by the factor 1 + n?/2
(valid for 0 < n < 3).
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this set of equations that the critical mass will be
essentially independent of the adopted strength of the
magnetic field.

b) Nonuniform Mean Magnetic Field

Consider the case where the ratio of magnetic pres-
sure to thermodynamic pressure is equal to a constant
v. Then Epeg = v [ 3PdV. The virial theorem, modified
to include a general magnetic field, can be written
(Chandrasekhar and Fermi 1953)

f 3PAV + W + Epag = 0. @)

It follows in the present case that Epae = —v(1 +v) "1 W.
In place of equation (19), we therefore have

o XTD—4
T +»@n— Dipy

Under the present assumption of constant v, the only
change required in the equilibrium equations of stellar
structure is the replacement of G by another constant
(1 + v)~'G. Consequently, the central condensation,
as measured by p./{p>, remains unaffected. On the
other hand, Eddington’s quartic equation now becomes

(M| Mo)p? = 18(1 — B)MB~%(1 + v)*2.  (23)

Thus the two direct effects of introducing a magnetic
field with constant v are to increase <I',;> by lowering
the relative radiation pressure (i.e., 1| — B) and to
“screen” the gravitational force by an amount
(1 + v)~1. These two factors, the one stabilizing and
the other destabilizing, compensate each other almost
exactly and so leave w?, and hence the critical mass,
nearly constant.

One further case is of physical interest here. If v is
very small in the stellar core but significant in the
stellar envelope, the critical mass is no longer a
constant. This conclusion follows from the fact that
the two variables P + (H?2)/24= and T must both be
continuous at all layers in the star, and therefore the
density p, under the present hypothesis, must ex-

(22)
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perience a sudden decrease on the exterior side of the
core boundary. (The effect is identical to that produced
by a discontinuity in the mean molecular weight at the
core boundary of an evolved star.) The induced growth
of the central condensation, as measured by p./<{p),
raises w?, and hence also raises the critical mass. Con-
versely, if v is significant only in the stellar core, the
critical mass is lowered.

V. CONCLUSION

If the magnetic field inside a homogeneous main-
sequence star can be assumed to be approximately
axisymmetric and subject to the local condition
(H?*» = §(H?), then such a field is found to have
the following consequences, depending on the field’s
spatial distribution: First, a uniform mean field
produces virtually no change in the equilibrium and
pulsational properties of the star. Second, a mean
field for which the ratio of magnetic to thermodynamic
pressure ((H?2)[24w=P) is large and constant every-
where in the star leads to a greatly reduced luminosity
of the star and to a mildly reduced effective tempera-
ture, but to no significant change in the pulsational
properties. Third, a mean field that is strong in the
stellar envelope and weak in the stellar core lowers the
luminosity relatively little (for a large core mass) but
mildly reduces the effective temperature, and tends to
stabilize the star pulsationally. In fact, if the ratio of
magnetic to thermodynamic pressure in the envelope
is greater than or equal to 0.1, the star is found to be
stable against nuclear-energized pulsations regardless
of how high its mass is.

Of greatest astrophysical interest is the third case.
It suggests that, if magnetic fields are indeed prevalent
and strong in the envelopes of upper-main-sequence
stars, the search for nuclear-destabilized stars of high
mass will turn out to be fruitless. This conclusion is
only strengthened if the stars have a moderate
amount of rotational angular momentum as well.

It is a pleasure to thank Dr. C.-w. Chin for inde-
pendently verifying equation (6).

APPENDIX
SURFACE BOUNDARY CONDITIONS

The geometry of the surface magnetic field may be rather simple (e.g., dipolar), but for heuristic purposes the
angular average of the Lorentz force given by equation (6) will be adopted here. At some large distance above the
photosphere of the star, the total pressure, including the magnetic pressure, must essentially vanish. Let us assume
that, at all layers above the photosphere, the magnetic pressure { H2)/24= falls off like r ~¢, where ¢ is a positive
constant. Since the condition dP/dr < 0 must hold everywhere, we require, at large r, ¢ > 1 and, at the photosphere,

GM ((H%)\ -1
<X (2417'/))13 ) (AD

By defining v = (H?»/247P and by integrating the equation of hydrostatic equilibrium from the top of the atmos-
phere down to the photosphere, we find that the inequality (A1) can be expressed approximately as ¢ < vz~ (R/Ar),
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where Ar is the effective thickness of the atmosphere. Since R/Ar is normally much greater than unity, the formal
upper limit on c is very large unless the magnetic field strength greatly exceeds the largest value that has ever been
observed in a main-sequence star.

With the present adoption of an r ~¢ law for the magnetic pressure, the surface boundary condition for the
mechanical pulsation equation becomes

(7). = ~a i =wairs (7). 42
where
- A% 6,

If 1 < ¢ < Cypper> then 0 < y < 1. For reasonable values of y (i.e., values close to zero), equation (A2) differs but
little from our formally adopted surface boundary condition based on imposing regularity on equation (15):

(S%D)R - 1(1—+4:(Vb) (i :)/(;2121 (g)n ) (Ad)

As for the heat flow condition, regularity of equation (17) requires

[SL(’)]R - [437’ —e2 @) %5] (A3)

L)

This implies that the radiative diffusion approximation holds throughout the atmosphere. We have formally
adopted this approximate surface boundary condition.

The making of various changes in the equilibrium and perturbed model atmospheres is found to have little
perceptible influence on the deeper layers of the stellar models because the inner structure of a radiative envelope
is rather insensitive to the surface boundary conditions.
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